It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The expanded granular sludge bed bioreactor appears today as a cheap, robust and more popular technology because it operates using a fluidized bed, which allows increasing in organic load and in cell retention times, generating higher treatment efficiencies (up to 95 %) and renewable energy (i.e., biogas, biomethane, and biohydrogen). Nevertheless, the efficiency of this bioreactor mainly depends on the operating conditions. Thus, the content presented in this review paper focuses on the analysis of the operating conditions and performance of expanded granular sludge bed bioreactor for treating different types of industrial, agro-industrial and domestic wastewaters (e.g., agro-food, beverage, alcohol distillery, tannery, slaughterhouse, chemical, pharmaceutical, municipal sewage, among others). Because of this reason, this study aimed to analyze the operating conditions and type of substrate, which has been used in these bioreactors to improve future research to wastewater treatment and renewable energy production. According to the review, it is concluded that the EGSB bioreactor is a novel sustainable alternative to treat different types of wastewaters and consequently change the paradigm of wastewater management from "treatment and disposal" to "beneficial use" as well as "profitable effort".
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Instituto de Investigación e Innovación en Energías Renovables, Universidad de Ciencias y Artes de Chiapas, Tuxtla Gutiérrez, Chiapas, México
2 Conacyt, Departamento de Química, Universidad de Guanajuato, Guanajuato, Guanajuato, México
3 Departamento de Ingeniería Química y Bioquímica, Tecnológico Nacional de México/Instituto Tecnológico de Tuxtla Gutiérrez, Tuxtla Gutiérrez, Chiapas, México