It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
Crowding is a major challenge faced by EDs and is associated with poor outcomes.
Objectives
Determine the effect of high ED occupancy on disposition decisions, return ED visits, and hospitalizations.
Methods
We conducted a retrospective analysis of electronic health records of patients evaluated at an adult, urban, and academic ED over 20 months between the years 2012 and 2014. Using a logistic regression model predicting admission, we obtained estimates of the effect of high occupancy on admission disposition, adjusted for key covariates. We then stratified the analysis based on the presence or absence of high boarder patient counts.
Results
Disposition decisions during a high occupancy hour decreased the odds of admission (OR = 0.93, 95% CI: [0.89, 0.98]). Among those who were not admitted, high occupancy was not associated with increased odds of return in the combined (OR = 0.94, 95% CI: [0.87, 1.02]), with-boarders (OR = 0.96, 95% CI: [0.86, 1.09]), and no-boarders samples (OR = 0.93, 95% CI: [0.83, 1.04]). Among those who were not admitted and who did return within 14 days, disposition during a high occupancy hour on the initial ED visit was not associated with a significant increased odds of hospitalization in the combined (OR = 1.04, 95% CI: [0.87, 1.24]), the with-boarders (OR = 1.12, 95% CI: [0.87, 1.44]), and the no-boarders samples (OR = 0.98, 95% CI: [0.77, 1.24]).
Conclusion
ED crowding was associated with reduced likelihood of hospitalization without increased likelihood of 2-week return ED visit or hospitalization. Furthermore, high occupancy disposition hours with high boarder patient counts were associated with decreased likelihood of hospitalization.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Department of Emergency Medicine, Acute Care Research Unit, Institute for Healthcare Policy and Innovation, University of Michigan, Ann Arbor, MI, USA; RAND Corporation, Santa Monica, CA, USA
2 Department of Emergency Medicine, Acute Care Research Unit, Institute for Healthcare Policy and Innovation, University of Michigan, Ann Arbor, MI, USA
3 Mathematica Policy Research, Boston, MA, USA
4 Hackensack University Medical Center, Hackensack, NJ, USA
5 Department of Global Health and Population, Harvard T.H. Chan School of Public Health, Boston, MA, USA
6 Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
7 Department of Emergency Medicine, University of Michigan, Ann Arbor, MI, USA