It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Based on information distribution and diffusion method theory and combined with the standardized precipitation index and relative meteorological yield data, meteorological factors and social factors were comprehensively considered to assess the vulnerability of maize (Zea mays) to drought. The probability distribution curve of meteorological drought degree (MDD) and relative meteorological yield in the eastern part of Northwest China (Gansu, Ningxia and Shaanxi) from 1978 to 2016 were obtained, using a two-dimensional normal information diffusion method to construct the vulnerability relationship between MDD and relative meteorological yield. The drought vulnerability curve of maize in the study area was obtained. The probability distribution of MDD was multiplied by the fragility curve and summed to obtain the multi-year average risk. The MDD probability distribution curve showed that the probability of moderate drought in Shaanxi was relatively high, followed by Gansu and Ningxia. The probability distribution of Gansu was more discrete. The probability of strong meteorological drought in Ningxia was high, followed by Shaanxi and Gansu. Probability distribution of relative meteorological yield for maize in Gansu Province was highly discrete, with thick tailings, large uncertainties, and more extreme values, which were strongly affected by meteorological conditions, followed by Shaanxi and Ningxia. Taking meteorological drought as the cause and maize damage as the result, the vulnerability relationship between MDD and drought damage was obtained. With an increased MDD, the relative meteorological yield of maize gradually declined. From the average value, when MDD was less than −2.60, the relative meteorological yield of maize was reduced within 15%; when MDD was greater than −2.60, the relative meteorological yield of maize increased within 10%. When the degree of meteorological drought exceeded −2.2, maize was most vulnerable to drought in Shaanxi followed by Ningxia and Gansu. When meteorological drought was less than −2.2, maize was most vulnerable to drought in Shaanxi followed by Gansu and Ningxia. The expected values of relative meteorological production in Gansu, Ningxia, and Shaanxi were 1.36%, 2.48%, and −1.76%, respectively; therefore, Shaanxi had the highest maize drought risk, followed by Gansu and Ningxia. This research had a clear physical background and clear risk connotations. The results provide a data foundation and a theoretical basis for drought disaster reduction for maize in the study area.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Institute of Arid Meteorology, China Meteorological Administration, Key Laboratory of Arid Climatic Change and Reducing Disaster of Gansu Province, Key Open Laboratory of Arid Change and Disaster Reduction of CMA, Lanzhou, Gansu, China (GRID:grid.8658.3) (ISNI:0000 0001 2234 550X)