Full Text

Turn on search term navigation

© 2019, Luo et al. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Direct reprogramming of fibroblasts to neurons induces widespread cellular and transcriptional reconfiguration. Here, we characterized global epigenomic changes during the direct reprogramming of mouse fibroblasts to neurons using whole-genome base-resolution DNA methylation (mC) sequencing. We found that the pioneer transcription factor Ascl1 alone is sufficient for inducing the uniquely neuronal feature of non-CG methylation (mCH), but co-expression of Brn2 and Mytl1 was required to establish a global mCH pattern reminiscent of mature cortical neurons. Ascl1 alone induced promoter CG methylation (mCG) of fibroblast specific genes, while BAM overexpression additionally targets a competing myogenic program and directs a more faithful conversion to neuronal cells. Ascl1 induces local demethylation at its binding sites. Surprisingly, co-expression with Brn2 and Mytl1 inhibited the ability of Ascl1 to induce demethylation, suggesting a contextual regulation of transcription factor - epigenome interaction. Finally, we found that de novo methylation by DNMT3A is required for efficient neuronal reprogramming.

Details

Title
Global DNA methylation remodeling during direct reprogramming of fibroblasts to neurons
Author
Luo Chongyuan; Lee Qian Yi; Wapinski Orly; Castanon Rosa; Nery, Joseph R; Mall Moritz; Kareta, Michael S; Cullen, Sean M; Goodell, Margaret A; Chang, Howard Y; Wernig Marius; Ecker, Joseph R
University/institution
U.S. National Institutes of Health/National Library of Medicine
Publication year
2019
Publication date
2019
Publisher
eLife Sciences Publications Ltd.
e-ISSN
2050084X
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2174217480
Copyright
© 2019, Luo et al. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.