It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Metal-free organic perovskite ferroelectric materials have been shown recently to have a number of attractive properties, including high spontaneous polarization and piezoelectric coefficients. In particular, slow evaporation of solutions containing organic amines, inorganic ammoniums, and dilute hydrohalogen acid has been shown to produce several attractive materials in the MDABCO-NH4-I3 family (MDABCO is N-methyl-N’-diazabicyclo[2,2,2] octonium). In the present work, we study by first-principles calculations the origin of polarizaiton, electronic density of state, piezoelectric response, and elastic properties of MDABCO-NH4-X3 (X = Cl, Br, I). We find that the dipole moments of the MDABCO and NH4 groups are negligible, and the large spontaneous polarization of MDABCO-NH4-I3 mainly results from MDABCO and NH4 being off-center relative to I ions. Although the piezoelectric response of organic materials is usually very weak, we observe large piezoelectric strain components, dx4 and dx5; the calculated dx5 is 119 pC/N for MDABCO-NH4-Cl3, 248 pC/N for MDABCO-NH4-Br3 and 178 pC/N for MDABCO-NH4-I3. The large value of dx5 is found to be closely related with the large value of elastic compliance tensor, s44. These results show that MDABCO-NH4-X3 metal-free organic perovskites have large piezoelectric response with soft elastic properties.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Henan University of Science and Technology, School of Physics and Engineering, Luoyang, China (GRID:grid.453074.1) (ISNI:0000 0000 9797 0900)
2 Institute of Microelectronics of Chinese Academy of Sciences, Beijing, China (GRID:grid.459171.f) (ISNI:0000 0004 0644 7225)
3 Shanghai Tech University, School of Physical Science and Technology, Shanghai, China (GRID:grid.440637.2)