It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Autocorrelation leads to a bias estimator of standard control charts. It is important to develop control chart that allows autocorrelation and to evaluate its performance. The objective of this paper is to evaluate the performance of multioutput least square support vector regression (MLS-SVR)-based multivariate exponentially weighted moving average (MEWMA) control chart for monitoring multivariate autocorrelated data. For first order of vector autoregressive (VAR) and first order of vector moving average data, the proposed control chart tends to yield stable in-control average run length at about 200. The proposed control chart becomes more insensitive due to the increase of MEWMA smoothing parameter. In the real application, the proposed method is successfully applied to monitor water turbidity and chlorine residual data in the drinking water manufacturing process.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer