It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
We demonstrate low-power amplification process in cavity optomechanics (COM). This operation is based on the nonlinear position-modulated self-Kerr interaction. Owing to this nonlinear term, the effective coupling highly scales with the photon number, resulting in a giant enhancement of the cooperativity. Even for small nonlinearity, the system reaches the amplification threshold for weak driving strength, leading to low-power phonon lasing. This amplifier can be phase-preserving and provides a practical advantage related to the power consumption issues. This work opens up new avenues to perform low-power and efficient amplifiers in optomechanics and related fields.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 UMR CNRS 8520 Université de Lille, Sciences et technologies, Institut d’Electronique, de Microélectronique et Nanotechnologie, Villeneuve d’ Ascq, France (GRID:grid.503422.2) (ISNI:0000 0001 2242 6780)