Full Text

Turn on search term navigation

Copyright © 2019 Mohammed M. Gad et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0/

Abstract

This study is aimed at evaluating the hybrid reinforcement effects of zirconium oxide nanoparticles (nano-ZrO2) and glass fibers (GFs) at different ratios on the flexural and impact strengths of a polymethylmethacrylate (PMMA) denture base. A total of 160 specimens were fabricated from heat-polymerized acrylic resins using the water bath technique. For the control group, the specimens did not receive any additions; for the test group, different concentrations of nano-ZrO2/GFs at 5% of the PMMA polymer were added. The concentrations of nano-ZrO2/GFs were as follows: 5%–0%, 4%–1%, 3%–2%, 2.5%–2.5%, 2%–3%, 1%–4%, and 0%–5%. The flexural strength was measured using the three-point bending test. The impact strength was measured using the Charpy impact test. Results were tabulated and analyzed using one-way analysis of variance (ANOVA) and the Tukey–Kramer multiple comparison test (p0.05). The flexural and impact strengths of PMMA-nano-ZrO2 + GF composites were significantly improved when compared with those of pure PMMA (p<0.05). The maximum flexural strength (94.05 ± 6.95 MPa) and impact strength (3.89 ± 0.46 kJ/m2) were obtained with PMMA (2.5%)/nano-ZrO2 + 2.5% GF mixtures and could be used for removable prosthesis fabrication.

Details

Title
Reinforcement of PMMA Denture Base Material with a Mixture of ZrO2 Nanoparticles and Glass Fibers
Author
Gad, Mohammed M 1   VIAFID ORCID Logo  ; Al-Thobity, Ahmad M 2 ; Rahoma, Ahmed 3 ; Abualsaud, Reem 2   VIAFID ORCID Logo  ; Al-Harbi, Fahad A 4 ; Akhtar, Sultan 5 

 Lecturer, Department of Substitutive Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31411, Saudi Arabia 
 Assistant Professor, Department of Substitutive Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31411, Saudi Arabia 
 Assistant Professor, Department of Restorative Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31411, Saudi Arabia 
 Professor, Department of Substitutive Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31411, Saudi Arabia 
 Department of Biophysics, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31411, Saudi Arabia 
Editor
Carlos A Munoz-Viveros
Publication year
2019
Publication date
2019
Publisher
John Wiley & Sons, Inc.
ISSN
16878728
e-ISSN
16878736
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2178093541
Copyright
Copyright © 2019 Mohammed M. Gad et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0/