Abstract

Controlling defect states in a buffer layer for organic photo devices is one of the vital factors which have great influence on the device performance. Defect states in silicon oxynitride (SiOxNy) buffer layer for organic photo devices can be controlled by introducing appropriate dopant materials. We performed ab initio simulations to identify the effect on doping SiOxNy with carbon (C), boron (B), and phosphorous (P) atoms. The results unveil that hole defects in the SiOxNy layer diminish with the phosphorous doping. Based on the simulation results, we fabricate the small molecule organic photodetector (OPD) including the phosphorous-doped SiOxNy buffer layer and the active film of blended naphthalene-based donor and C60 acceptor molecules, which shows excellent enhancement in the external quantum efficiency (EQE). The results of our charge-based deep level transient spectroscopy (Q-DLTS) measurements confirmed that the EQE enhancement originates from the decrease of the hole traps induced by the reduced hole defects. The method of controlling the defect states in SiOxNy buffer layers by the doping can be used to improve the performance in various organic photo devices.

Details

Title
The role of defects in organic image sensors for green photodiode
Author
Kim Seong Heon 1 ; lee, Jooho 1 ; Cho Eunae 1 ; Lee, Junho 1 ; Dong-Jin, Yun 1 ; Lee, Dongwook 1 ; Kim, Yongsung 1 ; Ro Takkyun 2 ; Chul-Joon, Heo 2 ; Hwang, Lee Gae 2 ; Jin Yong Wan 2 ; Kim Sunghan 2 ; Kyung-Bae, Park 2 ; Heo Sung 1   VIAFID ORCID Logo 

 Platform Technology Lab, Samsung Advanced Institute of Technology, 130, Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, Korea (GRID:grid.419666.a) (ISNI:0000 0001 1945 5898) 
 Organic Materials Laboratory, Samsung Advanced Institute of Technology, 130, Samsung-ro, Yeongtong-gu, Suwon-si, Gyeonggi-do, Korea (GRID:grid.419666.a) (ISNI:0000 0001 1945 5898) 
Publication year
2019
Publication date
Dec 2019
Publisher
Nature Publishing Group
e-ISSN
20452322
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2178603038
Copyright
This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.