It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
PiT1/SLC20A1 is an inorganic phosphate transporter with additional functions including the regulation of TNFα-induced apoptosis, erythropoiesis, cell proliferation and insulin signaling. Recent data suggest a relationship between PiT1 and NF-κB-dependent inflammation: (i) Pit1 mRNA is up-regulated in the context of NF-κB pathway activation; (ii) NF-κB target gene transcription is decreased in PiT1-deficient conditions. This led us to investigate the role of PiT1 in lipopolysaccharide (LPS)-induced inflammation. MCP-1 and IL-6 concentrations were impaired in PiT1-deficient bone marrow derived macrophages (BMDMs) upon LPS stimulation. Lower MCP-1 and IL-6 serum levels were observed in Mx1-Cre; Pit1lox/lox mice dosed intraperitoneally with LPS. Lower PiT1 expression correlated with decreased in vitro wound healing and lower reactive oxygen species levels. Reduced IκB degradation and lower p65 nuclear translocation were observed in PiT1-deficient cells stimulated with LPS. Conversely, PiT1 expression was induced in vitro upon LPS stimulation. Addition of an NF-κB inhibitor abolished LPS-induced PiT1 expression. Furthermore, we showed that p65 expression activated Pit1 promoter activity. Finally, ChIP assays demonstrated that p65 directly binds to the mPit1 promoter in response to LPS. These data demonstrate a completely novel function of PiT1 in the response to LPS and provide mechanistic insights into the regulation of PiT1 expression by NF-κB.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 INSERM UMR_S1151 CNRS UMR8253 Institut Necker-Enfants Malades (INEM) Université Paris Descartes, Paris, France (GRID:grid.10992.33) (ISNI:0000 0001 2188 0914); Cochin Hospital, APHP, Rheumatology Department, Paris, France (GRID:grid.411784.f) (ISNI:0000 0001 0274 3893); Centre de Référence des Maladies Rares du Métabolisme du Calcium et du Phosphate, site constitutif, Cochin Hospital, Paris, France (GRID:grid.411784.f) (ISNI:0000 0001 0274 3893)
2 INSERM UMR_S1151 CNRS UMR8253 Institut Necker-Enfants Malades (INEM) Université Paris Descartes, Paris, France (GRID:grid.10992.33) (ISNI:0000 0001 2188 0914); Université Paris Diderot-Sorbonne Paris Cité, Paris, France (GRID:grid.7452.4) (ISNI:0000 0001 2217 0017)
3 Université Paris Diderot, Sorbonne Paris Cité, Laboratoire d’Excellence Inflamex, Faculté de Médecine, Site Xavier Bichat, INSERM U1149, CNRS-ERL8252, Centre de Recherche sur l’Inflammation, Paris, France (GRID:grid.7452.4) (ISNI:0000 0001 2217 0017)
4 INSERM UMR_S1151 CNRS UMR8253 Institut Necker-Enfants Malades (INEM) Université Paris Descartes, Paris, France (GRID:grid.10992.33) (ISNI:0000 0001 2188 0914)
5 Inovarion, Paris, France (GRID:grid.10992.33)