Abstract

Production of objects with varied mechanical properties is challenging for current manufacturing methods. Additive manufacturing could make these multimaterial objects possible, but methods able to achieve multimaterial control along all three axes of printing are limited. Here we report a multi-wavelength method of vat photopolymerization that provides chemoselective wavelength-control over material composition utilizing multimaterial actinic spatial control (MASC) during additive manufacturing. The multicomponent photoresins include acrylate- and epoxide-based monomers with corresponding radical and cationic initiators. Under long wavelength (visible) irradiation, preferential curing of acrylate components is observed. Under short wavelength (UV) irradiation, a combination of acrylate and epoxide components are incorporated. This enables production of multimaterial parts containing stiff epoxide networks contrasted against soft hydrogels and organogels. Variation in MASC formulation drastically changes the mechanical properties of printed samples. Samples printed using different MASC formulations have spatially-controlled chemical heterogeneity, mechanical anisotropy, and spatially-controlled swelling that facilitates 4D printing.

Objects with varied mechanical properties can be produced by additive manufacturing, but multimaterial control along all three axes of printing is still limited. Here the authors use wavelength control during vat polymerization and demonstrate printing of objects with spatial control of the composition and stiffness.

Details

Title
Multimaterial actinic spatial control 3D and 4D printing
Author
Schwartz, J J 1   VIAFID ORCID Logo  ; Boydston, A J 1 

 University of Washington, Department of Chemistry, Seattle, USA (GRID:grid.34477.33) (ISNI:0000000122986657); University of Wisconsin, Department of Chemistry, Madison, USA (GRID:grid.28803.31) (ISNI:0000 0001 0701 8607) 
Publication year
2019
Publication date
Dec 2019
Publisher
Nature Publishing Group
e-ISSN
20411723
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2181779548
Copyright
This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.