Full text

Turn on search term navigation

Copyright © 2019 KunYong Zhang et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0/

Abstract

Three-dimensional finite element method analysis on the tunnel-soil-underground pipeline was carried out based on the ABAQUS program. PSI element was applied to simulate the interaction between the pipelines and soil. Parameters such as an elastic modulus of soil, stress release rate, at-rest lateral pressure coefficients, an elastic modulus of pipelines, and buried depths of tunnels were analyzed. The effects of tunnel excavation on the displacement of existing pipelines were investigated, and the settlement relationships were obtained. The relationship between each parameter and surface settlement was determined by the grey relational analysis method to analyze each parameter’s sensitivity to the settlement of the pipeline, which can provide a reference for emphasis and methods of shield tunneling support. Finally, a formula of the settlement relationship between the maximum surface settlement and pipelines deformation was proposed for different pipe-soil relative stiffness. The formula was applied in the practical case. Compared with the field monitoring results and FEM computer results, it has been found that the proposed normalized formula is consistent with the measured results and numerical simulation of the pipeline settlement.

Details

Title
Numerical Analysis of Pipelines Settlement Induced by Tunneling
Author
Zhang, KunYong 1   VIAFID ORCID Logo  ; Chavez Torres, Jose Luis 1   VIAFID ORCID Logo  ; Zang, ZhenJun 1   VIAFID ORCID Logo 

 Key Laboratory of Ministry of Education for Geomechanics and Embankment Engineering, Hohai University, Nanjing 210098, China; Geotechnical Engineering Institute, Hohai University, Nanjing 210098, China 
Editor
Antonio Formisano
Publication year
2019
Publication date
2019
Publisher
John Wiley & Sons, Inc.
ISSN
16878086
e-ISSN
16878094
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2182514879
Copyright
Copyright © 2019 KunYong Zhang et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0/