Full text

Turn on search term navigation

© 2018. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The agreement between reanalysis datasets, in terms of the zonal-mean momentum budget, is evaluated during sudden stratospheric warming (SSW) events. It is revealed that there is a good agreement among datasets in the lower stratosphere and troposphere concerning zonal-mean zonal wind, but less so in the upper stratosphere. Forcing terms of the momentum equation are also relatively similar in the lower atmosphere, but their uncertainties are typically larger than uncertainties of the zonal-wind tendency. Similar to zonal-wind tendency, the agreement among forcing terms is degraded in the upper stratosphere. Discrepancies among reanalyses increase during the onset of SSW events, a period characterized by unusually large fluxes of planetary-scale waves from the troposphere to the stratosphere, and decrease substantially after the onset. While the largest uncertainties in the resolved terms of the momentum budget are found in the Coriolis torque, momentum flux convergence also presents a non-negligible spread among the reanalyses. Such a spread is reduced in the latest reanalysis products, decreasing the uncertainty of the momentum budget. It is also found that the uncertainties in the Coriolis torque depend on the strength of SSW events: the SSW events that exhibit the most intense deceleration of zonal-mean zonal wind are subject to larger discrepancies among reanalyses. These uncertainties in stratospheric circulation, however, are not communicated to the troposphere.

Details

Title
A comparison of the momentum budget in reanalysis datasets during sudden stratospheric warming events
Author
Martineau, Patrick 1 ; Seok-Woo, Son 2 ; Taguchi, Masakazu 3 ; Butler, Amy H 4   VIAFID ORCID Logo 

 Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan 
 School of Earth and Environmental Sciences, Seoul National University, Seoul, South Korea 
 Department of Earth Science, Aichi University of Education, Kariya, Japan 
 Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, USA 
Pages
7169-7187
Publication year
2018
Publication date
2018
Publisher
Copernicus GmbH
ISSN
16807316
e-ISSN
16807324
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2184518587
Copyright
© 2018. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.