Abstract

Additive manufacturing of high-entropy alloys combines the mechanical properties of this novel family of alloys with the geometrical freedom and complexity required by modern designs. Here, a non-beam approach to additive manufacturing of high-entropy alloys is developed based on 3D extrusion of inks containing a blend of oxide nanopowders (Co3O4 + Cr2O3 + Fe2O3 + NiO), followed by co-reduction to metals, inter-diffusion and sintering to near-full density CoCrFeNi in H2. A complex phase evolution path is observed by in-situ X-ray diffraction in extruded filaments when the oxide phases undergo reduction and the resulting metals inter-diffuse, ultimately forming face-centered-cubic equiatomic CoCrFeNi alloy. Linked to the phase evolution is a complex structural evolution, from loosely packed oxide particles in the green body to fully-annealed, metallic CoCrFeNi with 99.6 ± 0.1% relative density. CoCrFeNi micro-lattices are created with strut diameters as low as 100 μm and excellent mechanical properties at ambient and cryogenic temperatures.

Additive manufacturing of high entropy alloys is still an emerging field that usually relies on expensive pre-alloyed powders. Here, the authors develop a method to 3D ink-print a CoCrFeNi high entropy alloy using inexpensive blended oxide nanopowders, hydrogen reduction, and sintering.

Details

Title
3D ink-extrusion additive manufacturing of CoCrFeNi high-entropy alloy micro-lattices
Author
Kenel Christoph 1   VIAFID ORCID Logo  ; Casati Nicola P M 2   VIAFID ORCID Logo  ; Dunand, David C 1   VIAFID ORCID Logo 

 Northwestern University, Department of Materials Science and Engineering, McCormick School of Engineering, Evanston, USA (GRID:grid.16753.36) (ISNI:0000 0001 2299 3507) 
 Paul Scherrer Institut, Swiss Light Source, Villigen, Switzerland (GRID:grid.5991.4) (ISNI:0000 0001 1090 7501) 
Publication year
2019
Publication date
Dec 2019
Publisher
Nature Publishing Group
e-ISSN
20411723
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2185064588
Copyright
This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.