It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Hidden Rashba and Dresselhaus spin splittings in centrosymmetric crystals with subunits/sectors having non-centrosymmetric symmetries (the R-2 and D-2 effects) have been predicted theoretically and then observed experimentally, but the microscopic mechanism remains unclear. Here we demonstrate that the spin splitting in the R-2 effect is enforced by specific symmetries, such as non-symmorphic symmetry in the present example, which ensures that the pertinent spin wavefunctions segregate spatially on just one of the two inversion-partner sectors and thus avoid compensation. We further show that the effective Hamiltonian for the conventional Rashba (R-1) effect is also applicable for the R-2 effect, but applying a symmetry-breaking electric field to a R-2 compound produces a different spin-splitting pattern than applying a field to a trivial, non-R-2, centrosymmetric compound. This finding establishes a common fundamental source for the R-1 effect and the R-2 effect, both originating from local sector symmetries rather than from the global crystal symmetry per se.
The Dresselhaus and Rashba effects have traditionally been expected only in non-centrosymmetric systems but recent work has shown that they can exist in some centrosymmetric materials. Here the authors show that the so-called hidden Rashba effect originates from wavefunction segregation enforced by local symmetries.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details

1 Chinese Academy of Sciences, State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Beijing, China (GRID:grid.9227.e) (ISNI:0000000119573309); University of Chinese Academy of Sciences, Center of Materials Science and Optoelectronics Engineering, Beijing, China (GRID:grid.410726.6) (ISNI:0000 0004 1797 8419)
2 University of Colorado, Renewable and Sustainable Energy Institute, Boulder, USA (GRID:grid.266190.a) (ISNI:0000000096214564); Southern University of Science and Technology, Institute for Quantum Science and Engineering, and Department of Physics, Shenzhen, China (GRID:grid.266190.a)
3 Shenzhen University, College of Physics and Optoelectronic Engineering, Guangdong, China (GRID:grid.263488.3) (ISNI:0000 0001 0472 9649)
4 Chinese Academy of Sciences, State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Beijing, China (GRID:grid.9227.e) (ISNI:0000000119573309); University of Chinese Academy of Sciences, Center of Materials Science and Optoelectronics Engineering, Beijing, China (GRID:grid.410726.6) (ISNI:0000 0004 1797 8419); Beijing Academy of Quantum Information Sciences, Beijing, China (GRID:grid.410726.6)
5 University of Colorado, Renewable and Sustainable Energy Institute, Boulder, USA (GRID:grid.266190.a) (ISNI:0000000096214564)