Full Text

Turn on search term navigation

© 2019 Riederer et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Objectives

To evaluate the accuracy of Spectral Photon-Counting Computed Tomography (SPCCT) in the quantification of iodine concentrations and its potential for the differentiation between blood and iodine.

Methods

Tubes with blood and a concentration series of iodine were scanned with a preclinical SPCCT system (both in vitro and in an ex vivo bovine brain tissue sample). Iodine density maps (IDM) and virtual non-contrast (VNC) images were generated using the multi-bin spectral information to perform material decomposition. Region-of-interest (ROI) analysis was performed within the tubes to quantitatively determine the absolute content of iodine (mg/ml).

Results

In conventional CT images, ROI analysis showed similar Hounsfield Unit (HU) values for the tubes with blood and iodine (59.9 ± 1.8 versus 59.2 ± 1.5). Iodine density maps enabled clear differentiation between blood and iodine in vitro, as well as in the bovine brain model. Quantitative measurements of the different iodine concentrations matched well with those of actual known concentrations even for very small iodine concentrations with values below 1mg/ml (RMSE = 0.19).

Conclusions

SPCCT providing iodine maps and virtual non-contrast images allows material decomposition, differentiation between blood and iodine in vitro and ex vivo in a bovine brain model and reliably quantifies the iodine concentration.

Details

Title
Differentiation between blood and iodine in a bovine brain—Initial experience with Spectral Photon-Counting Computed Tomography (SPCCT)
Author
Riederer, Isabelle; ⨯ Salim Si-Mohamed; Ehn, Sebastian; Bar-Ness, Daniel; Noël, Peter B; Fingerle, Alexander A; Pfeiffer, Franz; Rummeny, Ernst J; Douek, Philippe; Pfeiffer, Daniela
First page
e0212679
Section
Research Article
Publication year
2019
Publication date
Feb 2019
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2186082024
Copyright
© 2019 Riederer et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.