Full text

Turn on search term navigation

© 2019. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In light of climate change and growing numbers of people inhabiting riverine floodplains, worldwide demand for flood protection is increasing, typically through engineering approaches such as more and bigger levees. However, the well-documented “levee effect” of increased floodplain use following levee construction or enhancement often results in increased problems, especially when levees fail or are compromised by big flood events. Herein, we argue that there are also unintended socio-economic and ecological consequences of traditional engineering solutions that need to be better considered, communicated and weighed against alternative solutions. Socio-economic consequences include reduced aesthetic and recreational values as well as increased downstream flooding risk and reduced ecosystem services. Ecological consequences include hydraulic decoupling, loss of biodiversity and increased risk of contamination during flooding. In addition, beyond river losses of connectivity and natural riparian vegetation created by levees, changes in groundwater levels and increased greenhouse gas emissions are likely. Because flood protection requires huge financial investments and results in major and persistent changes to the landscape, more balanced decisions that involve all stakeholders and policymakers should be made in the future. This requires a transdisciplinary approach that considers alternative solutions such as green infrastructure and places emphasis on integrated flood management rather than on reliance on technical protection measures.

Details

Title
HESS Opinions: Socio-economic and ecological trade-offs of flood management – benefits of a transdisciplinary approach
Author
Auerswald, Karl 1   VIAFID ORCID Logo  ; Moyle, Peter 2 ; Seibert, Simon Paul 1 ; Geist, Juergen 3   VIAFID ORCID Logo 

 Grassland Science Unit, Technical University of Munich, 85354 Freising, Germany 
 Department of Wildlife, Fish, and Conservation Biology, Center for Watershed Sciences, University of California, Davis, CA 95616, USA 
 Aquatic Systems Biology Unit, Technical University of Munich, 85354 Freising, Germany 
Pages
1035-1044
Publication year
2019
Publication date
2019
Publisher
Copernicus GmbH
ISSN
10275606
e-ISSN
16077938
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2186800013
Copyright
© 2019. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.