Full text

Turn on search term navigation

© 2019. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Observations of total peroxy radical concentrations ([XO2] [RO2] + [HO2]) made by the Ethane CHemical AMPlifier (ECHAMP) and concomitant observations of additional trace gases made on board the Aerodyne Mobile Laboratory (AML) during May 2017 were used to characterize ozone production at three sites in the San Antonio, Texas, region. Median daytime [O3] was 48 ppbv at the site downwind of central San Antonio. Higher concentrations of NO andXO2 at the downwind site also led to median daytime ozone production rates (P(O3)) of 4.2 ppbv h-1, a factor of 2 higher than at the two upwind sites. The 95th percentile ofP(O3) at the upwind site was 15.1 ppbv h-1, significantly lower than values observed in Houston. In situ observations, as well as satellite retrievals of HCHO and NO2, suggest that the region was predominantly NOx-limited. Only approximately 20 % of observations were in the VOC-limited regime, predominantly before 11:00 EST, when ozone production was low. Biogenic volatile organic compounds (VOCs) comprised 55 % of total OH reactivity at the downwind site, with alkanes and non-biogenic alkenes responsible for less than 10 % of total OH reactivity in the afternoon, when ozone production was highest. To control ozone formation rates at the three study sites effectively, policy efforts should be directed at reducingNOx emissions. Observations in the urban center of San Antonio are needed to determine whether this policy is true for the entire region.

Details

Title
Characterization of ozone production in San Antonio, Texas, using measurements of total peroxy radicals
Author
Anderson, Daniel C 1   VIAFID ORCID Logo  ; Pavelec, Jessica 1 ; Conner Daube 2   VIAFID ORCID Logo  ; Herndon, Scott C 2   VIAFID ORCID Logo  ; Knighton, Walter B 3 ; Lerner, Brian M 2   VIAFID ORCID Logo  ; Roscioli, J Robert 2 ; Yacovitch, Tara I 2   VIAFID ORCID Logo  ; Wood, Ezra C 1 

 Department of Chemistry, Drexel University, Philadelphia, PA, USA 
 Aerodyne Research Inc., Billerica, MA, USA 
 Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT, USA 
Pages
2845-2860
Publication year
2019
Publication date
2019
Publisher
Copernicus GmbH
ISSN
16807316
e-ISSN
16807324
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2187564786
Copyright
© 2019. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.