Full text

Turn on search term navigation

© 2019 Liu, Liu. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The present study aimed to understand the effect of venous valve lesion on the valve cycle. A modified immersed finite element method was used to model the blood–tissue interactions in the pathological vein. The contact process between leaflets or between leaflet and sinus was evaluated using an adhesive contact method. The venous valve modeling was validated by comparing the results of the healthy valve with those of experiments and other simulations. Four valve lesions induced by the abnormal elasticity variation were considered for the unhealthy valve: fibrosis, atrophy, incomplete fibrosis, and incomplete atrophy. The opening orifice area was inversely proportional to the structural stiffness of the valve, while the transvalvular flow velocity was proportional to the structural stiffness of the valve. The stiffening of the fibrotic leaflet led to a decrease in the orifice area and a stronger jet. The leaflet and blood wall shear stress (WSS) in fibrosis was the highest. The softening of the atrophic leaflet resulted in overly soft behavior. The venous incompetence and reflux were observed in atrophy. Also, the atrophic leaflet in incomplete atrophy exhibited weak resistance to the hemodynamic action, and the valve was reluctant to be closed owing to the large rotation of the healthy leaflet. Low blood WSS and maximum leaflet WSS existed in all the cases. A less biologically favorable condition was found especially in the fibrotic leaflet, involving a higher mechanical cost. This study provided an insight into the venous valve lesion, which might help understand the valve mechanism of the diseased vein. These findings will be more useful when the biology is also understood. Thus, more biological studies are needed.

Details

Title
Effect of valve lesion on venous valve cycle: A modified immersed finite element modeling
Author
Liu, Xiang; Lisheng Liu ⨯
First page
e0213012
Section
Research Article
Publication year
2019
Publication date
Mar 2019
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2187933241
Copyright
© 2019 Liu, Liu. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.