It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Droplet impacting and bouncing off solid surface plays a vital role in various biological/physiological processes and engineering applications. However, due to a lack of accurate control of force transmission, the maneuver of the droplet movement and energy conversion is rather primitive. Here we show that the translational motion of an impacting droplet can be converted to gyration, with a maximum rotational speed exceeding 7300 revolutions per minute, through heterogeneous surface wettability regulation. The gyration behavior is enabled by the synergetic effect of the asymmetric pinning forces originated from surface heterogeneity and the excess surface energy of the spreading droplet after impact. The findings open a promising avenue for delicate control of liquid motion as well as actuating of solids.
Controlling droplet impact and rebound behaviour can have applications in inkjet printing and self-cleaning. Here the authors show how a chemically-patterned surface with high-adhesive spirals surrounded by hydrophobic, low-adhesive regions leads to gyration behaviour of impacting droplets.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details



1 Chinese Academy of Sciences, Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Beijing, P. R. China (GRID:grid.9227.e) (ISNI:0000000119573309); University of Chinese Academy of Sciences, Beijing, P. R. China (GRID:grid.410726.6) (ISNI:0000 0004 1797 8419)
2 Tsinghua University, AML, CNMM and Department of Engineering Mechanics, and State Key Laboratory of Tribology, Beijing, P. R. China (GRID:grid.12527.33) (ISNI:0000 0001 0662 3178)
3 Chinese Academy of Sciences, Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Beijing, P. R. China (GRID:grid.9227.e) (ISNI:0000000119573309)