Abstract

The Linear Response Theory (LRT) is a widely accepted framework to analyze the power absorption of magnetic nanoparticles for magnetic fluid hyperthermia. Its validity is restricted to low applied fields and/or to highly anisotropic magnetic nanoparticles. Here, we present a systematic experimental analysis and numerical calculations of the specific power absorption for highly anisotropic cobalt ferrite (CoFe2O4) magnetic nanoparticles with different average sizes and in different viscous media. The predominance of Brownian relaxation as the origin of the magnetic losses in these particles is established, and the changes of the Specific Power Absorption (SPA) with the viscosity of the carrier liquid are consistent with the LRT approximation. The impact of viscosity on SPA is relevant for the design of MNPs to heat the intracellular medium during in vitro and in vivo experiments. The combined numerical and experimental analyses presented here shed light on the underlying mechanisms that make highly anisotropic MNPs unsuitable for magnetic hyperthermia.

Details

Title
The relevance of Brownian relaxation as power absorption mechanism in Magnetic Hyperthermia
Author
Torres, Teobaldo E 1   VIAFID ORCID Logo  ; Lima Enio Jr 2 ; Pilar, Calatayud M 3 ; Sanz Beatriz 3 ; Ibarra, Alfonso 1 ; Fernández-Pacheco, Rodrigo 1 ; Mayoral Alvaro 4 ; Marquina Clara 5   VIAFID ORCID Logo  ; Ricardo, Ibarra M 6 ; Goya, Gerardo F 7   VIAFID ORCID Logo 

 Universidad de Zaragoza, C/Mariano Esquillor s/n, Instituto de Nanociencia de Aragón (INA), Zaragoza, Spain (GRID:grid.11205.37) (ISNI:0000 0001 2152 8769); Universidad de Zaragoza, C/Mariano Esquillor s/n, Laboratorio de Microscopias Avanzadas (LMA), Zaragoza, Spain (GRID:grid.11205.37) (ISNI:0000 0001 2152 8769) 
 Centro Atómico de Bariloche/CONICET, Div. Resonancias Magnéticas, Bariloche, Argentina (GRID:grid.11205.37) 
 Universidad de Zaragoza, C/Mariano Esquillor s/n, Instituto de Nanociencia de Aragón (INA), Zaragoza, Spain (GRID:grid.11205.37) (ISNI:0000 0001 2152 8769) 
 Shanghai Tech University. 393 Middle Huaxia Road, School of Physical Science and Technology, Pudong, Shanghai, China (GRID:grid.440637.2) 
 Universidad de Zaragoza, Departamento de Física de la Materia Condensada, Facultad de Ciencias, Zaragoza, Spain (GRID:grid.11205.37) (ISNI:0000 0001 2152 8769); Consejo Superior de Investigaciones Científicas (CSIC) - Universidad de Zaragoza, Instituto de Ciencias de Materiales de Aragón (ICMA), Zaragoza, Spain (GRID:grid.11205.37) (ISNI:0000 0001 2152 8769) 
 Universidad de Zaragoza, C/Mariano Esquillor s/n, Instituto de Nanociencia de Aragón (INA), Zaragoza, Spain (GRID:grid.11205.37) (ISNI:0000 0001 2152 8769); Universidad de Zaragoza, C/Mariano Esquillor s/n, Laboratorio de Microscopias Avanzadas (LMA), Zaragoza, Spain (GRID:grid.11205.37) (ISNI:0000 0001 2152 8769); Universidad de Zaragoza, Departamento de Física de la Materia Condensada, Facultad de Ciencias, Zaragoza, Spain (GRID:grid.11205.37) (ISNI:0000 0001 2152 8769) 
 Universidad de Zaragoza, C/Mariano Esquillor s/n, Instituto de Nanociencia de Aragón (INA), Zaragoza, Spain (GRID:grid.11205.37) (ISNI:0000 0001 2152 8769); Universidad de Zaragoza, Departamento de Física de la Materia Condensada, Facultad de Ciencias, Zaragoza, Spain (GRID:grid.11205.37) (ISNI:0000 0001 2152 8769) 
Publication year
2019
Publication date
Dec 2019
Publisher
Nature Publishing Group
e-ISSN
20452322
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2188975261
Copyright
This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.