It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Amyloid β (Aβ) oligomer-induced aberrant neurotransmitter release is proposed to be a crucial early event leading to synapse dysfunction in Alzheimer’s disease (AD). In the present study, we report that the release probability (Pr) at the synapse between the Schaffer collateral (SC) and CA1 pyramidal neurons is significantly reduced at an early stage in mouse models of AD with elevated Aβ production. High nanomolar synthetic oligomeric Aβ42 also suppresses Pr at the SC-CA1 synapse in wild-type mice. This Aβ-induced suppression of Pr is mainly due to an mGluR5-mediated depletion of phosphatidylinositol-4,5-bisphosphate (PIP2) in axons. Selectively inhibiting Aβ-induced PIP2 hydrolysis in the CA3 region of the hippocampus strongly prevents oligomeric Aβ-induced suppression of Pr at the SC-CA1 synapse and rescues synaptic and spatial learning and memory deficits in APP/PS1 mice. These results first reveal the presynaptic mGluR5-PIP2 pathway whereby oligomeric Aβ induces early synaptic deficits in AD.
The underlying mechanism of amyloid β (Aβ) oligomer-induced aberrant neurotransmitter release remains unclear. Here, authors show that the release probability at the synapse between the Schaffer collateral and CA1 pyramidal neurons is significantly reduced at an early stage in mouse models of AD with elevated Aβ production and is mainly due to an mGluR5-mediated depletion of PIP2 in axons.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details



1 Zhejiang University School of Medicine, Department of Neurobiology, and Department of Ophthalmology of the First Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Hangzhou, China (GRID:grid.13402.34) (ISNI:0000 0004 1759 700X)
2 Zhejiang University, Department of Pharmacology, NHC and CAMS Key Laboratory of Medical Neurobiology, College of Pharmaceutical Sciences, Hangzhou, China (GRID:grid.13402.34) (ISNI:0000 0004 1759 700X)
3 Chinese Academy of Sciences, Center for Stem Cell and NanoMedicine, Laboratory for System Biology, Shanghai Advanced Research Institute, Shanghai, China (GRID:grid.9227.e) (ISNI:0000000119573309)