Abstract

MicroRNAs (miRNAs) are endogenously short noncoding regulatory RNAs implicated in plant development and physiology. Nine small RNA (sRNA) libraries from three typical seed developmental stages (young, intermediate, and mature) were generated by deep sequencing to identify the miRNAs of J. curcas, a potential oilseed crop for the production of renewable oil. Strict criteria were adopted to identify 93 high confidence miRNAs including 48 conserved miRNAs and 45 novel miRNAs. Target genes of these miRNAs were involved in a broad range of physiological functions, including gene expression regulation, primary & secondary metabolism, growth & development, signal transduction, and stress response. About one third (29 out of 93) miRNAs showed significant changes in expression levels during the seed developmental process, indicating that the miRNAs might regulate its targets by their changes of transcription levels in seed development. However, most miRNAs were found differentially expressed in the late stage of seed development, suggesting that miRNAs play more important roles in the stage when seed accumulating organic matters and suffering dehydration stress. This study presents the first large scale identification of high confidence miRNAs in the developing seeds of J. curcas.

Details

Title
Identifying High Confidence microRNAs in the Developing Seeds of Jatropha curcas
Author
Yang Mingfeng 1 ; Lu Heshu 1 ; Xue Feiyan 1 ; Ma Lanqing 1 

 Beijing University of Agriculture, Key Laboratory of Urban Agriculture (North China) Ministry of Agriculture, Beijing, China (GRID:grid.411626.6) (ISNI:0000 0004 1798 6793) 
Publication year
2019
Publication date
Dec 2019
Publisher
Nature Publishing Group
e-ISSN
20452322
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2191353898
Copyright
This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.