It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Hepatocellular carcinoma (HCC), a common liver malignancy worldwide, has high morbidity and mortality. β-Thujaplicin, a tropolone derivative, has been used in some health-care products and clinical adjuvant drugs, but its use for HCC is unknown. In this study, we found that β-Thujaplicin inhibits the growth of HCC cells, but not normal liver cells, with nanomolar potency. Mechanistically, we found that β-Thujaplicin could induce autophagy, as judged by western blot, confocal microscopy, and transmission electron microscopy. Further using β-Thujaplicin combined with an autophagy blocker or agonist treatment HepG2 cells, we found that β-Thujaplicin induced autophagic cell death (ACD) mediated by ROS caused inhibition of the Akt-mTOR signaling pathway. Moreover, β-Thujaplicin triggered HepG2 apoptosis and increased cleaved PARP1, cleaved caspase-3, and Bax/Bcl-2 ratio, which indicated that β-Thujaplicin induced apoptosis mediated by the mitochondrial-dependent pathway. We also found that increased expression of p21 and decreased expression of CDK7, Cyclin D1, and Cyclin A2 participating in β-Thujaplicin caused the S-phase arrest. It seems that β-Thujaplicin exerts these functions by ROS-mediated p38/ERK MAPK but not by JNK signaling pathway activation. Consistent with in vitro findings, our in vivo study verified that β-Thujaplicin treatment significantly reduced HepG2 tumor xenograft growth. Taken together these findings suggest that β-Thujaplicin have an ability of anti-HCC cells and may conducively promote the development of novel anti-cancer agents.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Shanghai Jiao Tong University School of Medicine, Department of Endocrinology, Shanghai Ninth People’s Hospital, Shanghai, China (GRID:grid.16821.3c) (ISNI:0000 0004 0368 8293)
2 Zhejiang University School of Medicine, Department of Endocrinology, Affiliated Hangzhou First People’s Hospital, Hangzhou, China (GRID:grid.13402.34) (ISNI:0000 0004 1759 700X)
3 Shanghai Jiao Tong University School of Medicine, School of Public Health, Shanghai, China (GRID:grid.16821.3c) (ISNI:0000 0004 0368 8293)
4 Bengbu Medical College, Bengbu, China (GRID:grid.252957.e)
5 Shanghai Jiao Tong University School of Medicine, The Core Laboratory in Medical Center of Clinical Research, Shanghai Ninth People’s Hospital, Shanghai, China (GRID:grid.16821.3c) (ISNI:0000 0004 0368 8293)