It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
Iron plays crucial roles in the metabolism of eukaryotic cells. Much iron is trafficked into mitochondria where it is used for iron-sulfur cluster assembly and heme biosynthesis. A yeast strain in which Mrs3/4, the high-affinity iron importers on the mitochondrial inner membrane, are deleted exhibits a slow-growth phenotype when grown under iron-deficient conditions. However, these cells grow at WT rates under iron-sufficient conditions. The object of this study was to develop a mathematical model that could explain this recovery on the molecular level.
Results
A multi-tiered strategy was used to solve an ordinary-differential-equations-based mathematical model of iron import, trafficking, and regulation in growing Saccharomyces cerevisiae cells. At the simplest level of modeling, all iron in the cell was presumed to be a single species and the cell was considered to be a single homogeneous volume. Optimized parameters associated with the rate of iron import and the rate of dilution due to cell growth were determined. At the next level of complexity, the cell was divided into three regions, including cytosol, mitochondria, and vacuoles, each of which was presumed to contain a single form of iron. Optimized parameters associated with import into these regions were determined. At the final level of complexity, nine components were assumed within the same three cellular regions. Parameters obtained at simpler levels of complexity were used to help solve the more complex versions of the model; this was advantageous because the data used for solving the simpler model variants were more reliable and complete relative to those required for the more complex variants. The optimized full-complexity model simulated the observed phenotype of WT and Mrs3/4ΔΔ cells with acceptable fidelity, and the model exhibited some predictive power.
Conclusions
The developed model highlights the importance of an FeII mitochondrial pool and the necessary exclusion of O2 in the mitochondrial matrix for eukaryotic iron-sulfur cluster metabolism. Similar multi-tiered strategies could be used for any micronutrient in which concentrations and metabolic forms have been determined in different organelles within a growing eukaryotic cell.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer