It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
Microbial fuel cells (MFCs) are effective biofuel devices that use indigenous microbes to directly convert chemical energy from organics oxidation into bioelectric energy. To maximize energy-converting efficiency for bioelectricity generation in MFCs, redox mediators (RMs) (e.g., extracts obtained from plant resource-Camellia green tea) have been explored for optimal stimulation upon electron transfer (ET) capabilities. Anthocyanins are natural antioxidants widely used in food science and medicinal industry. This first-attempt study revealed optimal strategies to augment extracts of anthocyanin-rich herbs (Lycium ruthenicum Murr., Clitoria ternatea Linn. and Vaccinium Spp.) as biofuel sources of catalytic RMs for stimulating bioenergy extraction in MFCs.
Results
This work showed that extracts of anthocyanin-rich herbs were promising electroactive RMs. The maximal power density of MFCs supplemented with extract of L. ruthenicum Murr. was achieved, suggesting that extract of L. ruthenicum Murr. would be the most electrochemically appropriate RMs. Compared to C. ternatea Linn. and Vaccinium Spp., L. ruthenicum Murr. evidently owned the most significant redox-mediating capability to stimulate bioenergy extraction likely due to significantly high contents of polyphenols (e.g., anthocyanin). Evidently, increases in adenosine triphosphate (ATP) content directly responded to supplementation of anthocyanin-rich herbal extracts. It strongly suggested that the electron-shuttling characteristics of RMs upon electroactive microorganisms could effectively promote the electron transfer capability to maximize bioenergy extraction in MFCs.
Conclusion
Anthocyanin as the main water-soluble vacuolar pigments in plant products were very electroactive for not only excellent antioxidant activities, but also promising electron-shuttling capabilities for renewable biofuel applications. This work also suggested the electron-shuttling mechanism of RMs that could possibly promote electron transport phenomena through microbial cell membrane, further influencing the electron transport chain for efficient bioenergy generation.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer