It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Trans fatty acids (TFA) increase the risk of mortality and chronic diseases. TFA intakes have fallen since reformulation, but may still be high in certain, vulnerable, groups. This paper investigates socio-economic and food consumption characteristics of high TFA consumers after voluntary reformulation in the Netherlands and UK. Post-reformulation data of adults aged 19–64 was analysed in two national surveys: the Dutch National Food Consumption Survey (DNFCS) collected 2007–2010 using 2*24hr recalls (N = 1933) and the UK National Diet and Nutrition Survey (NDNS) years 3&4 collected 2010/11 and 2011/12 using 4-day food diaries (N = 848). The socio-economic and food consumption characteristics of the top 10% and remaining 90% TFA consumers were compared. Means of continuous data were compared using t-tests and categorical data means using chi-squared tests. Multivariate logistic regression models indicated which socio-demographic variables were associated with high TFA consumption. In the Dutch analyses, women and those born outside the Netherlands were more likely to be top 10% TFA consumers than men and Dutch-born. In the UK unadjusted analyses there was no significant trend in socio-economic characteristics between high and lower TFA consumers, but there were regional differences in the multivariate logistic regression analyses. In the Netherlands, high TFA consumers were more likely to be consumers of cakes, buns & pastries; cream; and fried potato than the remaining 90%. Whereas in the UK, high TFA consumers were more likely to be consumers of lamb; cheese; and dairy desserts and lower crisps and savoury snack consumers. Some socio-demographic differences between high and lower TFA consumers were evident post-reformulation. High TFA consumers in the Dutch 2007–10 survey appeared more likely to obtain TFA from artificial sources than those in the UK survey. Further analyses using more up-to-date food composition databases may be needed.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details





1 Nutritional Epidemiology Group (NEG), School of Food Science and Nutrition, University of Leeds, Leeds, UK
2 Centre for Nutrition, Prevention and Health Services, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
3 Division of Noncommunicable Diseases and Promoting Health through the Life-Course, World Health Organization Regional Office for Europe, Copenhagen, Denmark