Due to new calculations, there are revisions to the Results section under the sub-heading “Half-life estimates.” Please see the corrected text here:
To determine the rate of decay of virus in feed, half-life estimates were calculated for five pathogens: SVA, PSV, FCV, BHV-1 and ASFV using end point titers determined on Batch 4 samples (Table 4). Overall, half-life appeared to be influenced by virus and ingredient type, with FCV and SVA displaying extended half-lives in samples of conventional soybean meal, 44.4 days and 22.3 days, respectively. SVA appeared to be the most stable virus in feed, with half-lives ranging from 3.9 to 22.3 days across the 10 ingredients in which it survived. Remarkably, FCV presented the longest half-life of all viruses in conventional soybean meal (44.6 days), but its half-life was much shorter (4.3 to 7.9 days) in the other three ingredients that contained viable virus. In contrast, PSV (5.1 to 8.6 days), ASFV (4.1 to 5.1 days) and BHV-1 (4.4 days) displayed shorter, but relatively consistent half-lives across the ingredients in which they survived. Interestingly, the half-life of the ASFV stock virus (4.7 days), was similar to that of virus in the presence of feed matrices.
As a result of the new calculations, there are updates to Table 4. Please see the corrected Table 4 here.
thumbnail
Download:
*
PPT
PowerPoint slide
*
PNG
larger image
*
TIFF
original image
Table 4. An overview of viability across all viruses tested in the study, including PEDV [14] highlighting half-life estimates (in days) of viruses presenting measurable endpoint titers across ingredients on Batch 4 samples.
https://doi.org/10.1371/journal.pone.0214529.t001
1. Dee SA, Bauermann FV, Niederwerder MC, Singrey A, Clement T, de Lima M, et al. (2018) Survival of viral pathogens in animal feed ingredients under transboundary shipping models. PLoS ONE 13(3): e0194509. https://doi.org/10.1371/journal.pone.0194509 pmid:29558524
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
© 2019 Dee et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.