It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Two-dimensional materials having a layered structure comprise a monolayer or multilayers of atomic thickness and ultra-low shear strength. Their high specific surface area, in-plane strength, weak layer-layer interaction, and surface chemical stability result in remarkably low friction and wear-resisting properties. Thus, 2D materials have attracted considerable attention. In recent years, great advances have been made in the scientific research and industrial applications of anti-friction, anti-wear, and lubrication of 2D materials. In this article, the basic nanoscale friction mechanisms of 2D materials including interfacial friction and surface friction mechanisms are summarized. This paper also includes a review of reports on lubrication mechanisms based on the film-formation, self-healing, and ball bearing mechanisms and applications based on lubricant additives, nanoscale lubricating films, and space lubrication materials of 2D materials in detail. Finally, the challenges and potential applications of 2D materials in the field of lubrication were also presented.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 School of Mechanical Engineering, Guangxi University of Science and Technology, Liuzhou, China
2 Chengdu Carbon Co., Ltd., No.88 South2 Road, Economic and Technological Development Zone, Chengdu, China
3 State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, China
4 State Key Laboratory of Tribology, Tsinghua University, Beijing, China