It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
This paper presents a multidirectional beam steering reflector (MBSR) actuated by hydraulic control. It consists of three substrates, an elastic membrane, a magnetic base and a mirror reflector (MR). The MR is fixed on the magnetic base and covered upon the top substrate. The bottom substrate is designed with three channels for pulling in/out the liquid. When liquid volume changes, the shape of the elastic membrane changes to form a liquid piston, accordingly. The liquid piston can make the MR rotate to different directions. When a light beam irradiates the MR, it can achieve the function of beam steering in latitude and longitude, simultaneously. Our experiments show that the proposed MBSR can deflect the light beam through a maximum angle of 0~12.7° in latitude and six-directions in longitude. The MBSR has potential applications in the fields of free-space optical communications, laser detections and solar cells.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details

1 Beihang University, School of Instrumentation and Optoelectronic Engineering, Beijing, China (GRID:grid.64939.31) (ISNI:0000 0000 9999 1211); Beihang University, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Beijing, China (GRID:grid.64939.31) (ISNI:0000 0000 9999 1211)