It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Disorder in proteins is vital for biological function, yet it is challenging to characterize. Therefore, methods for predicting protein disorder from sequence are fundamental. Currently, predictors are trained and evaluated using data from X-ray structures or from various biochemical or spectroscopic data. However, the prediction accuracy of disordered predictors is not calibrated, nor is it established whether predictors are intrinsically biased towards one of the extremes of the order-disorder axis. We therefore generated and validated a comprehensive experimental benchmarking set of site-specific and continuous disorder, using deposited NMR chemical shift data. This novel experimental data collection is fully appropriate and represents the full spectrum of disorder. We subsequently analyzed the performance of 26 widely-used disorder prediction methods and found that these vary noticeably. At the same time, a distinct bias for over-predicting order was identified for some algorithms. Our analysis has important implications for the validity and the interpretation of protein disorder, as utilized, for example, in assessing the content of disorder in proteomes.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer