Abstract

We present the first performance results obtained with microwave multiplexed Transition Edge Sensors prototypes specifically designed for the HOLMES experiment, a project aimed at directly measuring the electron neutrino mass through the calorimetric measurement of the \[^{163}\]Ho electron capture spectrum. The detectors required for such an experiment feature a high energy resolution at the Q–value of the transition, around \[\sim \] 2.8 keV, and a fast response time combined with the compatibility to be multiplexed in large arrays in order to collect a large statistics while keeping the pile-up contribution as small as possible. In addition, the design has to be suitable for future ion-implantation of \[^{163}\]Ho. The results obtained in these tests allowed us to identify the optimal detector design among several prototypes. The chosen detector achieved an energy resolution of (4.5 ± 0.3) eV on the chlorine K\[_\alpha \] line, at \[\sim \] 2.6 keV, obtained with an exponential rise time of 14 \[\upmu \]s. The achievements described in this paper pose a milestone for the HOLMES detectors, setting a baseline for the subsequent developments, aiming to the actual ion-implantation of the \[^{163}\]Ho nuclei. In the first section the HOLMES experiment is outlined along with its physics goal, while in the second section the HOLMES detectors are described; the experimental set-up and the calibration source used for the measurements described in this paper are reported in Sects. 3 and 4, respectively; finally, the details of the data analysis and the results obtained are reported in Sect. 6.

Details

Title
High-resolution high-speed microwave-multiplexed low temperature microcalorimeters for the HOLMES experiment
Author
Alpert, B 1 ; Becker, D 1 ; Bennet, D 1 ; Biasotti, M 2 ; Borghesi, M 3 ; Gallucci, G 2 ; De Gerone, M 2 ; Faverzani, M 3   VIAFID ORCID Logo  ; Ferri, E 3 ; Fowler, J 1 ; Gard, J 1 ; Giachero, A 3 ; J Hays–Wehle 4 ; Hilton, G 1 ; Mates, J 1 ; Nucciotti, A 3 ; Orlando, A 5 ; Pessina, G 6 ; Puiu, A 3 ; Reintsema, C 1 ; Schmidt, D 1 ; Swetz, D 1 ; Ullom, J 1 ; Vale, L 1 

 National Institute of Standards and Technology (NIST), Boulder, CO, USA 
 Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Genova, Genoa, Italy 
 Dipartimento di Fisica “G. Occhialini”, Università di Milano - Bicocca, Milan, Italy; Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Milano-Bicocca, Milan, Italy 
 National Institute of Standards and Technology (NIST), Boulder, CO, USA; Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Milano-Bicocca, Milan, Italy; NASA Goddard Space Flight Center, Greenbelt, MD, USA 
 Dipartimento di Fisica “G. Occhialini”, Università di Milano - Bicocca, Milan, Italy; Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Milano-Bicocca, Milan, Italy; Cardiff University, Cardiff, UK 
 Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Milano-Bicocca, Milan, Italy 
Pages
1-8
Publication year
2019
Publication date
Apr 2019
Publisher
Springer Nature B.V.
ISSN
14346044
e-ISSN
14346052
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2202710691
Copyright
The European Physical Journal C is a copyright of Springer, (2019). All Rights Reserved., © 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.