It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background: Profiling of mRNA expression is an important method to identify biomarkers but complicated by limited correlations between mRNA expression and protein abundance. We hypothesised that these correlations could be improved by mathematical models based on measuring splice variants and time delay in protein translation. Methods: We characterised time-series of primary human naive CD4+ T cells during early T-helper type 1 differentiation with RNA-sequencing and mass-spectrometry proteomics. We then performed computational time-series analysis in this system and in two other key human and murine immune cell types. Linear mathematical mixed time-delayed splice variant models were used to predict protein abundances, and the models were validated using out-of-sample predictions. Lastly, we re-analysed RNA-Seq datasets to evaluate biomarker discovery in five T-cell associated diseases, validating the findings for multiple sclerosis (MS) and asthma. Results: The new models demonstrated median correlations of mRNA-to-protein abundance of 0.79-0.94, significantly out-performing models not including the usage of multiple splice variants and time-delays, as shown in cross-validation tests. Our mathematical models provided more differentially expressed proteins between patients and controls in all five diseases. Moreover, analysis of these proteins in asthma and MS supported their relevance. One marker, sCD27, was clinically validated in MS using two independent cohorts, for treatment response and prognosis. Conclusion: Our splice variant and time-delay models substantially improved the prediction of protein abundance from mRNA data in three immune cell-types. The models provided valuable biomarker candidates, which were validated in clinical studies of MS and asthma. We propose that our strategy is generally applicable for biomarker discovery.
Footnotes
* Mainly the format has been changed from a Nature letter type to that of a traditional research article. As a result, the paper has been significantly lengthened give room for additional background, extra figures and discussion.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer