It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Determination of mechanical loading regimen that would induce a prescribed new bone formation rate and its site-specific distribution, may be desirable to treat some orthopaedic conditions such as bone loss due to muscle disuse, e.g. because of space flight, bed-rest, osteopenia etc. Site-specific new bone formation has been determined earlier experimentally and numerically for a given loading regimen; however these models are mostly non-invertible, which means that they cannot be easily inverted to predict loading parameters for a desired new bone formation. The present work proposes an invertible model of bone remodeling, which can predict loading parameters such as peak strain, or magnitude and direction of periodic forces for a desired or prescribed site-specific mineral apposition rate (MAR), and vice versa. This fast, mathematical model has a potential to be developed into an important aid for orthopaedic surgeons for prescribing exercise or exogenous loading of bone to treat bone-loss due to muscle disuse.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer