It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
DNA methylation plays important roles in determining cellular identity, disease, and environmental responses, but little is known about the mechanisms that drive methylation changes during cellular differentiation and tumorigenesis. Meanwhile, the causal relationship between DNA methylation and transcription remains incompletely understood. Recently developed targeted DNA methylation manipulation tools can address these gaps in knowledge, leading to new insights into how methylation governs gene expression. Here, we summarize technological developments in the DNA methylation editing field and discuss the remaining challenges facing current tools, as well as potential future directions.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer