Full text

Turn on search term navigation

© 2019 Luo et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The fragile ecological environment near mines provide advantageous conditions for the development of landslides. Mine landslide susceptibility mapping is of great importance for mine geo-environment control and restoration planning. In this paper, a total of 493 landslides in Shangli County, China were collected through historical landslide inventory. 16 spectral, geomorphic and hydrological predictive factors, mainly derived from Landsat 8 imagery and Global Digital Elevation Model (ASTER GDEM), were prepared initially for landslide susceptibility assessment. Predictive capability of these factors was evaluated by using the value of variance inflation factor and information gain ratio. Three models, namely artificial neural network (ANN), support vector machine (SVM) and information value model (IVM), were applied to assess the mine landslide sensitivity. The receiver operating characteristic curve (ROC) and rank probability score were used to validate and compare the comprehensive predictive capabilities of three models involving uncertainty. Results showed that ANN model achieved higher prediction capability, proving its advantage of solve nonlinear and complex problems. Comparing the estimated landslide susceptibility map with the ground-truth one, the high-prone area tends to be located in the middle area with multiple fault distributions and the steeply sloped hill.

Details

Title
Mine landslide susceptibility assessment using IVM, ANN and SVM models considering the contribution of affecting factors
Author
Luo, Xiangang; Lin, Feikai; Zhu, Shuang; Yu, Mengliang; Zhang, Zhuo; Meng, Lingsheng; Peng, Jing
First page
e0215134
Section
Research Article
Publication year
2019
Publication date
Apr 2019
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2209700786
Copyright
© 2019 Luo et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.