It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Macrophage-orchestrated, low-grade chronic inflammation plays a pivotal role in obesity and atherogenesis. However, the underlying regulatory mechanisms remain incompletely understood. Here, we identify major vault protein (MVP), the main component of unique cellular ribonucleoprotein particles, as a suppressor for NF-κB signaling in macrophages. Both global and myeloid-specific MVP gene knockout aggravates high-fat diet induced obesity, insulin resistance, hepatic steatosis and atherosclerosis in mice. The exacerbated metabolic disorders caused by MVP deficiency are accompanied with increased macrophage infiltration and heightened inflammatory responses in the microenvironments. In vitro studies reveal that MVP interacts with TRAF6 preventing its recruitment to IRAK1 and subsequent oligomerization and ubiquitination. Overexpression of MVP and its α-helical domain inhibits the activity of TRAF6 and suppresses macrophage inflammation. Our results demonstrate that macrophage MVP constitutes a key constraint of NF-κB signaling thereby suppressing metabolic diseases.
Metabolic diseases are associated with chronic, low-grade inflammation. Here the authors show that major vault protein (MVP) suppresses NF-κB signalling in macrophages via an IRAK1–TRAF6 axis and that loss of MVP in myeloid cells exacerbates the inflammatory response in mice fed a high fat diet.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details

1 Nanjing Medical University, Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing 211166, China (GRID:grid.89957.3a) (ISNI:0000 0000 9255 8984)
2 Nanjing Medical University, Department of General Surgery, Bayi Clinical Medicine School, Nanjing 210002, China (GRID:grid.89957.3a) (ISNI:0000 0000 9255 8984)
3 Erasmus University Medical Center, Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam 3000 CA, The Netherlands (GRID:grid.5645.2) (ISNI:000000040459992X)