It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
The amount of patient-related information within clinical information systems accumulates over time, especially in cases where patients suffer from chronic diseases with many hospitalizations and consultations. The diagnosis or problem list is an important feature of the electronic health record, which provides a dynamic account of a patient’s current illness and past history. In the case of an Austrian hospital network, problem list entries are limited to fifty characters and are potentially linked to ICD-10. The requirement of producing ICD codes at each hospital stay, together with the length limitation of list items leads to highly redundant problem lists, which conflicts with the physicians’ need of getting a good overview of a patient in short time.
This paper investigates a method, by which problem list items can be semantically grouped, in order to allow for fast navigation through patient-related topic spaces.
Methods
We applied a minimal language-dependent preprocessing strategy and mapped problem list entries as tf-idf weighted character 3-grams into a numerical vector space. Based on this representation we used the unweighted pair group method with arithmetic mean (UPGMA) clustering algorithm with cosine distances and inferred an optimal boundary in order to form semantically consistent topic spaces, taking into consideration different levels of dimensionality reduction via latent semantic analysis (LSA).
Results
With the proposed clustering approach, evaluated via an intra- and inter-patient scenario in combination with a natural language pipeline, we achieved an average compression rate of 80% of the initial list items forming consistent semantic topic spaces with an F-measure greater than 0.80 in both cases. The average number of identified topics in the intra-patient case (μIntra = 78.4) was slightly lower than in the inter-patient case (μInter = 83.4). LSA-based feature space reduction had no significant positive performance impact in our investigations.
Conclusions
The investigation presented here is centered on a data-driven solution to the known problem of information overload, which causes ineffective human-computer interactions at clinicians’ work places. This problem is addressed by navigable disease topic spaces where related items are grouped and the topics can be more easily accessed.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer