It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The simulation of the East Asian winter monsoon (EAWM) has been a challenge for climate models. In this study, the performances of two versions of the AGCM developed at the IAP, versions 1 and 2 of the Grid-point Atmospheric Model of the IAP/LASG (GAMIL1 and GAMIL2), are evaluated in the context of mean state and interannual variation. Significant improvements are shown for GAMIL2 in comparison to GAMIL1. The simulated interannual variability of the EAWM, measured by the regional average of 1000 hPa meridional wind over East Asia, has evidently improved; the correlation coefficient with reanalysis data changes from 0.37 in GAMIL1 to 0.71 in GAMIL2. The associated interannual precipitation anomalies are also improved, in terms of both spatial pattern and magnitude. Analysis demonstrates that the improvements result from the better simulation of the El Niño-related Philippine Sea anticyclone (PSAC) in GAMIL2. The improved moist processes, including the stratiform condensation and evaporation in GAMIL2, lead to a reasonable atmospheric heating associated with El Niño in the tropical Pacific, which further drives the PSAC as a Rossby-wave response.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China; College of Earth Science, University of Chinese Academy of Sciences, Beijing, China
2 State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China; Climate Change Research Center, Chinese Academy of Sciences, Beijing, China
3 State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China