It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The output power of a photovoltaic system largely depends on the amount of solar radiation that can be received by the photovoltaic panel, and the solar radiation energy reaching the ground is affected by the radiation transmission process. However, in engineering practice, numerical simulation prediction schemes tend to adopt a kind of radiation scheme, and the prediction of solar radiation and photovoltaic power cannot always meet the prediction accuracy. In this paper, NCEP–NCAR reanalysis data are used as the initial field, and a variety of radiation parameterization schemes are used to produce simulations for the Xinjiang area. Through analysis of examples, it is found that the simulation results differ greatly depending on the radiation parameterization scheme employed, with the maximum absolute error of the total radiation and the predicted power being 106.67 W m−2 and 3.5 MW, respectively. Meanwhile, the mean absolute percentage error of the total radiation ranges from 8.6% to 17.3%, and that of the predicted power from 11.3% to 20.2%. Having analyzed the simulation results of the different radiation parameterization schemes, we conclude that the RRTM/Dudhia and CAM (Community Atmospheric Model) schemes are the most appropriate when under clear-weather conditions.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 China Electric Power Research Institute, Nanjing, China