It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The interdecadal circumglobal teleconnection (ID-CGT) pattern is the dominant circulation mode over the NH during boreal summer on the interdecadal time scale. Its temporal evolution is synchronous with that of the Atlantic Multidecadal Oscillation (AMO). In this study, through analyzing the results of sensitivity experiments using five AGCMs driven by specified AMO-related SST anomalies (SSTAs) in the North Atlantic, the authors investigate whether the ID-CGT is excited by the AMO. Two out of the five models simulate the barotropic stationary wave pattern located along the westerly jet, suggesting that the ID-CGT pattern should be excited, at least partially, by the AMO-related SSTAs. Model results suggest that the ID-CGT pattern plays a role in linking the AMO and NH summer land SAT perturbations on the interdecadal time scale.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 The State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China; College of Earth Science, University of Chinese Academy of Sciences, Beijing, China
2 The State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China; Joint Center for Global Change Studies, Beijing, China