It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Graphene enhanced WO3 has recently become a promising material for various applications. The understanding of the transfer of charge carriers during the photocatalytic processes remains unclear because of their complexity. In this study, the characteristics of the deposited WO3/graphene layered materials were investigated by Raman spectroscopy, UV–vis spectroscopy, and SEM. According to the results, p-graphene exhibits and enhances the characteristics of the WO3/graphene film. The photocatalytic activities of WO3/graphene layered materials were assessed by the photocatalytic degradation of oxytetracycline antibiotics as irradiated by UV light. Here, a higher current of cyclic voltammetry and a higher resistance of impedance spectra were obtained with the as-grown WO3/graphene directly synthesized on Cu foils under UV light using an electrochemical method, which was different from traditional WO3 catalysts. Thus, it is urgent to explore the underlying mechanism in depth. In this study, a large layered material WO3/graphene was fabricated on a Si substrate using a modified CVD method, and a WO3/graphene device was developed by depositing a gold electrode material and compared with a WO3 device. Due to photo-induced doping effects, the current-voltage test suggested that the photo-resistance is larger than dark-resistance, and the photo-current is less than the dark current based on WO3/graphene layered materials, which are significantly different from the characteristics of the WO3 layered material. A new pathway was developed here to analyze the transfer properties of carriers in the photocatalytic process.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 College of Electronic Engineering, South China Agricultural University, Guangzhou, China
2 School of Materials Science and Engineering, Nanyang Technological University, Singapore, Singapore
3 College of Engineering, South China Agricultural University, Guangzhou, China