It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
ORAI1 constitutes the store-operated Ca2+ release-activated Ca2+ (CRAC) channel crucial for life. Whereas ORAI1 activation by Ca2+-sensing STIM proteins is known, still obscure is how ORAI1 is turned off through Ca2+-dependent inactivation (CDI), protecting against Ca2+ toxicity. Here we identify a spatially-restricted Ca2+/cAMP signaling crosstalk critical for mediating CDI. Binding of Ca2+-activated adenylyl cyclase 8 (AC8) to the N-terminus of ORAI1 positions AC8 near the mouth of ORAI1 for sensing Ca2+. Ca2+ permeating ORAI1 activates AC8 to generate cAMP and activate PKA. PKA, positioned by AKAP79 near ORAI1, phosphorylates serine-34 in ORAI1 pore extension to induce CDI whereas recruitment of the phosphatase calcineurin antagonizes the effect of PKA. Notably, CDI shapes ORAI1 cytosolic Ca2+ signature to determine the isoform and degree of NFAT activation. Thus, we uncover a mechanism of ORAI1 inactivation, and reveal a hitherto unappreciated role for inactivation in shaping cellular Ca2+ signals and NFAT activation.
ORAI1 constitutes the store-operated Ca2+ release-activated Ca2+ (CRAC) channel, but how this channel is turned off through Ca2+-dependent inactivation (CDI) remained unclear. Here the authors identify a spatially-restricted Ca2+/cAMP signaling crosstalk critical for mediating CDI which in turn regulates cellular Ca2+ signals and NFAT activation.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details

1 The Pennsylvania State University College of Medicine, Department of Cellular and Molecular Physiology, Hershey, USA (GRID:grid.29857.31) (ISNI:0000 0001 2097 4281)
2 National Institutes of Health, Department of Health and Human Services, Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Durham, USA (GRID:grid.48336.3a) (ISNI:0000 0004 1936 8075)
3 The Pennsylvania State University College of Medicine, Department of Pharmacology, Hershey, USA (GRID:grid.29857.31) (ISNI:0000 0001 2097 4281)