Abstract

Pseudo-Newtonian potential has always been a useful tool to discuss the motion of a particle in space-time to avoid the tedious and nearly impossible nonlinear computations coming from the field equations of general relativity. Mukhopadhyay, in 2002, has introduced such a pseudo-Newtonian potential for rotating Kerr black hole which is efficient enough to replicate the scenario of the classical mechanics. But there was no such model to explain the dark energy realm. In 2016 Ghosh introduced a Lagrangian for such rotating black hole embedded in quintessence. in this article we obtained a pseudo-Newtonian force for this new black hole solution embedded quintessence. This paper introduces a simple computational scheme to evaluate a pseudo-Newtonian force for any space-time metric. This model possesses at most 4.95% error corresponding to general relativistic results. Since we took a popular agent of dark energy, i.e., quintessence into account, this is a general form of pseudo-Newtonian force to explain late time accelerating universe. In this paper, it also has been discussed about the difference between the pseudo-Newtonian force with and without dark energy effect. This paper also explains the natures of our present universe and its fate(locally around a black hole when repulsive negative pressure of dark energy is taken into account).

Details

Title
Pseudo Newtonian potential for a rotating Kerr black hole embedded in quintessence
Author
Sarkar, Siddhartha Sankar 1 ; Biswas, Ritabrata 1 

 Department of Mathematics, The University of Burdwan, Burdwan, West Bengal, India 
Pages
1-24
Publication year
2019
Publication date
May 2019
Publisher
Springer Nature B.V.
ISSN
14346044
e-ISSN
14346052
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2218799086
Copyright
The European Physical Journal C is a copyright of Springer, (2019). All Rights Reserved., © 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.