Abstract

In molecular solids, the intense photoluminescence (PL) observed for solvated dye molecules is often suppressed by nonradiative decay processes introduced by excitonic coupling to adjacent chromophores. We have developed a strategy to avoid this undesirable PL quenching by optimizing the chromophore packing. We integrated the photoactive compounds into metal-organic frameworks (MOFs) and tuned the molecular alignment by introducing adjustable “steric control units” (SCUs). We determined the optimal alignment of core-substituted naphthalenediimides (cNDIs) to yield highly emissive J-aggregates by a computational analysis. Then, we created a large library of handle-equipped MOF chromophoric linkers and computationally screened for the best SCUs. A thorough photophysical characterization confirmed the formation of J-aggregates with bright green emission, with unprecedented photoluminescent quantum yields for crystalline NDI-based materials. This data demonstrates the viability of MOF-based crystal engineering approaches that can be universally applied to tailor the photophysical properties of organic semiconductor materials.

In molecular solids, photoluminescence of dye molecules is often suppressed owing to excitonic coupling with adjacent chromophores. Here the authors use a computational method to predict the optimal alignment of naphthalenediimide linkers in metal–organic frameworks to afford J-aggregates, and demonstrate the same by fabricating highly photoluminescent thin film.

Details

Title
A de novo strategy for predictive crystal engineering to tune excitonic coupling
Author
Haldar Ritesh 1   VIAFID ORCID Logo  ; Mazel Antoine 2 ; Krstić Marjan 3   VIAFID ORCID Logo  ; Zhang, Qiang 4 ; Jakoby Marius 5 ; Howard, Ian A 6   VIAFID ORCID Logo  ; Richards, Bryce S 6 ; Jung, Nicole 7 ; Jacquemin, Denis 2   VIAFID ORCID Logo  ; Diring Stéphane 2 ; Wenzel, Wolfgang 3 ; Odobel Fabrice 2 ; Wöll Christof 8   VIAFID ORCID Logo 

 Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany 
 Chimie et Interdisciplinarité: Synthèse, Analyse, Modélisation (CEISAM), UMR 6230, Université de Nantes, CNRS, Nantes Cedex 3, France (GRID:grid.462886.6) (ISNI:0000 0004 0385 7229) 
 Karlsruhe Institute of Technology (KIT), Karlsruhe Institute of Technology (KIT), Institute of Nanotechnology (INT), Eggenstein-Leopoldshafen, Germany (GRID:grid.7892.4) (ISNI:0000 0001 0075 5874) 
 Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany (GRID:grid.7892.4); Karlsruhe Institute of Technology (KIT), Karlsruhe Institute of Technology (KIT), Institute of Nanotechnology (INT), Eggenstein-Leopoldshafen, Germany (GRID:grid.7892.4) (ISNI:0000 0001 0075 5874) 
 Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany (GRID:grid.7892.4) 
 Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany (GRID:grid.7892.4); Light Technology Institute (LTI), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany (GRID:grid.7892.4) 
 Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany (GRID:grid.7892.4) 
 Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany (GRID:grid.462886.6) 
Publication year
2019
Publication date
2019
Publisher
Nature Publishing Group
e-ISSN
20411723
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2219590650
Copyright
© The Author(s) 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.