Full text

Turn on search term navigation

Copyright © 2019 Fang Liu et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0/

Abstract

In order to solve the problem that the model-based State of Charge (SOC) estimation method is too dependent on the model parameters in the SOC estimation of electric vehicles, an improved genetic algorithm is proposed in this paper. The method has the advantages of being able to quickly determine the search range, reducing the probability of falling into local optimum, and having high recognition accuracy. Then we can realize online dynamic identification of power battery model parameters and improve the accuracy of model parameter identification. In addition, considering the complex application environment and operating conditions of electric vehicles, an SOC estimation method based on improved genetic algorithm and unscented particle filter (improved GA-UPF) is proposed. And we compare the improved GA-UPF algorithm with the least square unscented particle filter (LS-UPF) and improved GA unscented Kalman filter (improved GA-UKF) algorithm. The comparison results show that the improved GA-UPF algorithm proposed in this paper has higher estimation accuracy and better stability. It also reflects the practicability and accuracy of the improved GA parameter identification algorithm proposed in this paper.

Details

Title
Unscented Particle Filter for SOC Estimation Algorithm Based on a Dynamic Parameter Identification
Author
Liu, Fang 1   VIAFID ORCID Logo  ; Ma, Jie 2   VIAFID ORCID Logo  ; Su, Weixing 2 

 School of Computer Science and Technology, Tianjin Polytechnic University, Tianjin 300387, China; Tianjin Qingyuan Electric Vehicle Limited Liability Company, Tianjin 300457, China 
 School of Computer Science and Technology, Tianjin Polytechnic University, Tianjin 300387, China 
Editor
Zhiwei Gao
Publication year
2019
Publication date
2019
Publisher
John Wiley & Sons, Inc.
ISSN
1024123X
e-ISSN
15635147
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2220155428
Copyright
Copyright © 2019 Fang Liu et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0/