Full text

Turn on search term navigation

© 2019 Ginda et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Learning analytics and visualizations make it possible to examine and communicate learners’ engagement, performance, and trajectories in online courses to evaluate and optimize course design for learners. This is particularly valuable for workforce training involving employees who need to acquire new knowledge in the most effective manner. This paper introduces a set of metrics and visualizations that aim to capture key dynamical aspects of learner engagement, performance, and course trajectories. The metrics are applied to identify prototypical behavior and learning pathways through and interactions with course content, activities, and assessments. The approach is exemplified and empirically validated using more than 30 million separate logged events that capture activities of 1,608 Boeing engineers taking the MITxPro Course, “Architecture of Complex Systems,” delivered in Fall 2016. Visualization results show course structure and patterns of learner interactions with course material, activities, and assessments. Tree visualizations are used to represent course hierarchical structures and explicit sequence of content modules. Learner trajectory networks represent pathways and interactions of individual learners through course modules, revealing patterns of learner engagement, content access strategies, and performance. Results provide evidence for instructors and course designers for evaluating the usage and effectiveness of course materials and intervention strategies.

Details

Title
Visualizing learner engagement, performance, and trajectories to evaluate and optimize online course design
Author
Ginda, Michael; Richey, Michael C; Cousino, Mark; Börner, Katy
First page
e0215964
Section
Research Article
Publication year
2019
Publication date
May 2019
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2221082750
Copyright
© 2019 Ginda et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.