Abstract

Tight junctions, or zonula occludens, are the most apical component of the junctional complex and provide one form of cell–cell adhesion in epithelial and endothelial cells. Nearly 90% of malignant tumors are derived from the epithelium. Loss of cell–cell adhesion is one of the steps in the progression of cancer to metastasis. At least three main tight junction family proteins have been discovered: occludin, claudin, and junctional adhesion molecule (JAM). Claudins are the most important structural and functional components of tight junction integral membrane proteins, with at least 24 members in mammals. They are crucial for the paracellular flux of ions and small molecules. Overexpression or downregulation of claudins is frequently observed in epithelial-derived cancers. However, molecular mechanisms by which claudins affect tumorigenesis remain largely unknown. As the pivotal proteins in epithelial cells, altered expression and distribution of different claudins have been reported in a wide variety of human malignancies, including pancreatic, colonic, lung, ovarian, thyroid, prostate, esophageal, and breast cancers. In this review, we will give the readers an overall picture of the changes in claudin expression observed in various cancers and their mechanisms of regulation. Downregulation of claudins contributes to epithelial transformation by increasing the paracellular permeability of nutrients and growth factors to cancerous cells. In the cases of upregulation of claudin expression, the barrier function of the cancerous epithelia changes, as they often display a disorganized arrangement of tight junction strands with increased permeability to paracellular markers. Finally, we will summarize the literature suggesting that claudins may become useful biomarkers for cancer detection and diagnosis as well as possible therapeutic targets for cancer treatment.

Details

Title
The claudin family of proteins in human malignancy: a clinical perspective
Author
Ding, Lei; Lu, Zhe; Lu, Qun; Yan-Hua, Chen
Pages
367-375
Section
Review
Publication year
2013
Publication date
2013
Publisher
Taylor & Francis Ltd.
e-ISSN
1179-1322
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2221986429
Copyright
© 2013. This work is licensed under https://creativecommons.org/licenses/by-nc/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.