It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Snake venom is a complex biological mixture used for immobilization and killing of prey for alimentation. Many effects are inflicted by this venom, such as coagulation, necrosis, bleeding, inflammation, and shock. This study aimed to evaluate the inflammatory activity promoted by Bothrops erythromelas and Crotalus durissus cascavella snake venom. It was observed that both B. erythromelas and C. d. cascavella venom induced higher interferon-gamma and interleukin-6 production. Nitric oxide (NO) was significantly produced only by B. erythromelas venom, which also showed a higher rate of cell death induction when compared with C. d. cascavella. Results showed that B. erythromelas and C. d. cascavella venom induced distinct response in vitro through cytokines and NO production. However, B. erythromelas induces a proinflammatory response and a higher rate of cell death in relation to C. d. cascavella venom.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer