Abstract

The design of achromatic optical components requires materials with high transparency and low dispersion. We show that although metals are highly opaque, densely packed arrays of metallic nanoparticles can be more transparent to infrared radiation than dielectrics such as germanium, even when the arrays are over 75% metal by volume. Such arrays form effective dielectrics that are virtually dispersion-free over ultra-broadband ranges of wavelengths from microns up to millimeters or more. Furthermore, the local refractive indices may be tuned by altering the size, shape, and spacing of the nanoparticles, allowing the design of gradient-index lenses that guide and focus light on the microscale. The electric field is also strongly concentrated in the gaps between the metallic nanoparticles, and the simultaneous focusing and squeezing of the electric field produces strong ‘doubly-enhanced’ hotspots which could boost measurements made using infrared spectroscopy and other non-linear processes over a broad range of frequencies.

Designing effective dielectrics in a broad range of the spectrum is of huge interest. Here, the authors demonstrate how transparent effective dielectrics can be constructed from dense arrays of metallic nanoparticles and can result in being more transparent than real dielectrics renowned for their transparency.

Details

Title
Extraordinarily transparent compact metallic metamaterials
Author
Palmer, Samuel J 1 ; Xiao Xiaofei 1   VIAFID ORCID Logo  ; Pazos-Perez, Nicolas 2 ; Guerrini Luca 2 ; Correa-Duarte, Miguel A 3   VIAFID ORCID Logo  ; Maier, Stefan A 4 ; Craster, Richard V 5 ; Alvarez-Puebla, Ramon A 6   VIAFID ORCID Logo  ; Giannini Vincenzo 7   VIAFID ORCID Logo 

 Imperial College London, The Blackett Laboratory, London, UK (GRID:grid.7445.2) (ISNI:0000 0001 2113 8111) 
 Universitat Rovira i Virgili, Department of Physical Chemistry and EMaS, Tarragona, Spain (GRID:grid.410367.7) (ISNI:0000 0001 2284 9230) 
 Universidade de Vigo, Department of Physical Chemistry, Singular Center for Biomedical Research (CINBIO), Southern Galicia Institute of Health Research (IISGS), and Biomedical Research Networking Center for Mental Health (CIBERSAM), Vigo, Spain (GRID:grid.6312.6) (ISNI:0000 0001 2097 6738) 
 Imperial College London, The Blackett Laboratory, London, UK (GRID:grid.7445.2) (ISNI:0000 0001 2113 8111); Ludwig-Maximilians-Universität München, Nanoinstitut München, Faculty of Physics, München, Germany (GRID:grid.5252.0) (ISNI:0000 0004 1936 973X) 
 Imperial College London, Department of Mathematics, London, UK (GRID:grid.7445.2) (ISNI:0000 0001 2113 8111) 
 Universitat Rovira i Virgili, Department of Physical Chemistry and EMaS, Tarragona, Spain (GRID:grid.410367.7) (ISNI:0000 0001 2284 9230); ICREA, Barcelona, Spain (GRID:grid.425902.8) (ISNI:0000 0000 9601 989X) 
 Imperial College London, The Blackett Laboratory, London, UK (GRID:grid.7445.2) (ISNI:0000 0001 2113 8111); Consejo Superior de Investigaciones Científicas (CSIC), Instituto de Estructura de la Materia (IEM), Madrid, Spain (GRID:grid.4711.3) (ISNI:0000 0001 2183 4846) 
Publication year
2019
Publication date
2019
Publisher
Nature Publishing Group
e-ISSN
20411723
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2222645186
Copyright
© The Author(s) 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.